
Chapter 1

21

P

Introducing Python

Getting Started with Parallel Computing and Python

22

https://www.python.org/doc/
essays/omg-darpa-mcc-position

Getting ready
https://www.python.org/downloads/

Integrated Development Environment IDE

http://
www.python.org/idle https://www.jetbrains.com/pycharm/

http://www.sublimetext.com/

How to do it…

>>>

>>> # This is a comment

>>> width = 20

>>> height = 5*9

>>> width * height

900

Chapter 1

23

>>> a=1.5+0.5j

>>> a.real

1.5

>>> a.imag

0.5

>>> abs(a) # sqrt(a.real**2 + a.imag**2)

5.0

>>> word = 'Help' + 'A'

>>> word

'HelpA'

>>> word[4]

'A'

>>> word[0:2]

'He'

>>> word[-1] # The last character

'A'

>>> a = ['spam', 'eggs', 100, 1234]

>>> a[0]

'spam'

>>> a[3]

1234

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> len(a)

4

Getting Started with Parallel Computing and Python

24

 while

Fibonacci series:

>>> while b < 10:

... print b

... a, b = b, a+b

...

1

1

2

3

5

8

 if

input()

>>>x = int(input("Please enter an integer here: "))

Please enter an integer here:

if

>>>if x < 0:

... print ('the number is negative')

...elif x == 0:

... print ('the number is zero')

...elif x == 1:

... print ('the number is one')

...else:

... print ('More')

...

 for

>>> # Measure some strings:

... a = ['cat', 'window', 'defenestrate']

>>> for x in a:

... print (x, len(x))

...

cat 3

window 6

defenestrate 12

Chapter 1

25

>>> def fib(n): # write Fibonacci series up to n

... """Print a Fibonacci series up to n."""

... a, b = 0, 1

... while b < n:

... print (b),

... a, b = b, a+b

...

>>> # Now call the function we just defined:

... fib(2000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

>>> import math

>>> math.sin(1)

0.8414709848078965

>>> from math import *

>>> log(1)

0.0

>>> class Complex:

... def __init__(self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

...

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

Getting Started with Parallel Computing and Python

26

Python in a parallel world

Introducing processes and threads

Chapter 1

27

Start working with processes in Python

Getting ready

https://www.python.org/

How to do it…

 called_Process.py

 calling_Process.py

Getting Started with Parallel Computing and Python

28

called_Process.py

print ("Hello Python Parallel Cookbook!!")

closeInput = raw_input("Press ENTER to exit")

print "Closing calledProcess"

calling_Process.py

##The following modules must be imported

import os

import sys

##this is the code to execute

program = "python"

print("Process calling")

arguments = ["called_Process.py"]

##we call the called_Process.py script

os.execvp(program, (program,) + tuple(arguments))

print("Good Bye!!")

calling_Process.py
F5

Chapter 1

29

Enter

How it works…
execvp

called_Process.py

input() called_Process.py

Start working with threads in Python

Global Interpreter Lock
GIL

Getting Started with Parallel Computing and Python

30

How to do it…
helloPythonWithThreads.py

To use threads you need import Thread using the following code:

from threading import Thread

##Also we use the sleep function to make the thread "sleep"

from time import sleep

To create a thread in Python you'll want to make your class work as a
thread.

For this, you should subclass your class from the Thread class

class CookBook(Thread):

 def __init__(self):

 Thread.__init__(self)

 self.message = "Hello Parallel Python CookBook!!\n"

##this method prints only the message

 def print_message(self):

 print (self.message)

##The run method prints ten times the message

 def run(self):

 print ("Thread Starting\n")

 x=0

 while (x < 10):

 self.print_message()

 sleep(2)

 x += 1

 print ("Thread Ended\n")

#start the main process

print ("Process Started")

Chapter 1

31

create an instance of the HelloWorld class

hello_Python = CookBook()

print the message...starting the thread

hello_Python.start()

#end the main process

print ("Process Ended")

calling_Process.py
F5

Getting Started with Parallel Computing and Python

32

How it works…

